Reg. No. : $\square$

## Question Paper Code : 61280

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

First Semester
Civil Engineering
MA 1101 - MATHEMATICS - I
(Common to all branches)
(Regulation 2008)
Time: Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Find the sum of the squares of the eigenvalues of the matrix $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$.
2. Find the associated matrix related to the quadratic form $3 x_{1}^{2}-7 x_{3}^{2}+x_{1} x_{2}+12 x_{2} x_{3}$.
3. Find $k$ if $\frac{x-2}{3}=\frac{y-1}{2}=\frac{z-3}{k}$ and $\frac{x-3}{k}=\frac{y-2}{3}=\frac{z-4}{5}$ are coplanar.
4. Find the length of the tangent drawn from $(1,2,3)$ to the sphere $x^{2}+y^{2}+z^{2}-3 x+4 y-5 z+7=0$.
5. Find the radius of curvature of $y=e^{\sqrt{3 x}}$ at $x=0$.
6. Find the envelope of the family of lines $\frac{x}{t}+y t=2 c, t$ being parameter.
7. Find the nature of the stationary point $(1,2)$ of the function $f(x, y)$ which has $f_{x x}=6 x, f_{x y}=0, f_{y y}=6 y$ :
8. If $x=u-u v, y=u v$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
9. Find the particular integral of $\left(D^{2}-2 D+5\right) y=e^{-x} \sin 2 x$.
10. Convert $\left(x^{2} D^{2}-x D-3\right) y=\frac{1}{x} \cos (2 \log x)$ into differential equation with constant coefficients.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the eigenvalues and eigenvectors of the adjoint matrix $A$, given that $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2\end{array}\right]$.
(ii) Diagonalise $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right]$ by an orthogonal transformation.

Or
(b) (i) Verify that the eigenvectors of a real symmetric matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ are orthogonal pairs.
(ii) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and hence the inverse of $A$.
12. (a) (i) Find the length and equations of the shortest distance between the lines $\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z-3}{3}$ and $\frac{x+1}{2}=\frac{y}{-1}=\frac{z-1}{3}$.
(ii) Find the equation of the right circular cylinder whose axis is the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$ and whose radius is equal to 5 .

Or
(b) (i) Find the equation of the sphere passing through the circle $x^{2}+y^{2}+z^{2}-2 x-3 y+4 z+8=0, \quad 3 x+4 y-5 z=3$ and having its centre on the plane $4 x-5 y-z=3$.
(ii) Find the equation of the cone whose vertex is (3,1,2) and base curve is $2 x^{2}+3 y^{2}=1, z=1$.
13. (a) (i) Show that the curves $y=c \cosh \frac{x}{c}$ and $x^{2}=2 c(y-c)$ have the same curvature at the points where they cross the $y$-axis.
(ii) Find the evolute of the parabola $y^{2}=4 \alpha x$, considering it as envelope of its normals.

Or
(b) (i) Find the evolute of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.
(ii) Find the envelope of the family of lines $x \cos \alpha+y \sin \alpha=c \sin \alpha \cos \alpha, \alpha$ being parameter.
14. (a) (i) If $z=f(u, v)$, where $u=l x+m y$ and $v=l y-m x$, prove that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=4\left(l^{2}+m^{2}\right)\left(\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)$.
(ii) Find the Taylor series expansion of $e^{x} \cos y$ about $(0,0)$ up to the terms of the third degree.

Or
(b) (i) If $u=x y z, v=x y+y z+z x$ and $w=x+y+z$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(ii) Discuss the maxima and minima of $f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$.
15. (a) (i) Solve $\left(D^{2}+2 D-1\right) y=\left(x+e^{x}\right)^{2}$.
(ii) Solve the simultaneous equations $(D+4) x+3 y=t$, $2 x+(D+5) y=e^{2 t}$.

## Or

(b) (i) Solve $\left((3 x+2)^{2} D^{2}+3(3 x+2) D-36\right) y=3 x^{2}+4 x+1$.
(ii) Solve $\left(D^{2}+1\right) y=x \cos x$ by method of variation of parameters.

