Question Paper Code : 61280

Reg. No. :

B.E./B. Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

First Semester

Civil Engineering

MA 1101 — MATHEMATICS – I

(Common to all branches)

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the sum of the squares of the eigenvalues of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.
- 2. Find the associated matrix related to the quadratic form $3x_1^2 7x_3^2 + x_1x_2 + 12x_2x_3$.
- 3. Find k if $\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-3}{k}$ and $\frac{x-3}{k} = \frac{y-2}{3} = \frac{z-4}{5}$ are coplanar.
- 4. Find the length of the tangent drawn from (1,2,3) to the sphere $x^2 + y^2 + z^2 3x + 4y 5z + 7 = 0$.
- 5. Find the radius of curvature of $y = e^{\sqrt{3x}}$ at x = 0.
- 6. Find the envelope of the family of lines $\frac{x}{t} + yt = 2c$, t being parameter.
- 7. Find the nature of the stationary point (1,2) of the function f(x,y) which has $f_{xx} = 6x, f_{xy} = 0, f_{yy} = 6y$.

3. If
$$x = u - uv$$
, $y = uv$, find $\frac{\partial(u, v)}{\partial(x, y)}$.

- 9. Find the particular integral of $(D^2 2D + 5)y = e^{-x} \sin 2x$.
- 10. Convert $(x^2D^2 xD 3)y = \frac{1}{x}\cos(2\log x)$ into differential equation with constant coefficients.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the eigenvalues and eigenvectors of the adjoint matrix A, given that $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$. (8) $\begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$
 - (ii) Diagonalise $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ by an orthogonal transformation. (8)
 - Or

(b) (i) Verify that the eigenvectors of a real symmetric matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are orthogonal pairs. (8)

- (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence the inverse of A. (8)
- 12. (a) (i) Find the length and equations of the shortest distance between the lines $\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{3}$ and $\frac{x+1}{2} = \frac{y}{-1} = \frac{z-1}{3}$. (8)
 - (ii) Find the equation of the right circular cylinder whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ and whose radius is equal to 5. (8) Or
 - (b) (i) Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 2x 3y + 4z + 8 = 0$, 3x + 4y 5z = 3 and having its centre on the plane 4x 5y z = 3. (8)
 - (ii) Find the equation of the cone whose vertex is (3,1,2) and base curve is $2x^2 + 3y^2 = 1, z = 1$. (8)

2

61280

- 13. (a) (i) Show that the curves $y = c \cosh \frac{x}{c}$ and $x^2 = 2c(y-c)$ have the same curvature at the points where they cross the y-axis. (8)
 - (ii) Find the evolute of the parabola $y^2 = 4\alpha x$, considering it as envelope of its normals. (8)

Or

- (b) (i) Find the evolute of the cycloid $x = a(\theta + \sin \theta), y = a(1 \cos \theta)$. (8)
 - (ii) Find the envelope of the family of lines $x \cos \alpha + y \sin \alpha = c \sin \alpha \cos \alpha$, α being parameter. (8)

14. (a) (i) If
$$z = f(u,v)$$
, where $u = lx + my$ and $v = ly - mx$, prove that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 4\left(l^2 + m^2\right)\left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2}\right).$$
(8)

(ii) Find the Taylor series expansion of e^x cos y about (0,0) up to the terms of the third degree.
 (8)

Or

(b) (i) If
$$u=xyz$$
, $v=xy+yz+zx$ and $w=x+y+z$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. (6)

(ii) Discuss the maxima and minima of $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (10)

15. (a) (i) Solve
$$(D^2 + 2D - 1)y = (x + e^x)^2$$
. (8)
(ii) Solve the simultaneous equations $(D + 4)x + 3y = t$.

(ii) Solve the simultaneous equations
$$(D+4)x + 3y = t$$
,
 $2x + (D+5)y = e^{2t}$. (8)

Or

(b) (i) Solve
$$((3x+2)^2D^2+3(3x+2)D-36)y=3x^2+4x+1$$
. (8)

(ii) Solve
$$(D^2 + 1)y = x \cos x$$
 by method of variation of parameters. (8)

61280

3